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Abstract

A new method for micromechanical analysis of multi-phase composites is presented. The new method is inspired
by the generalized method of cells which is widely utilized in the ®eld of composite mechanics. The new method,

called strain-compatible method of cells, exhibits the so called shear coupling e�ect, absent in the generalized
method of cells. Because of this shear coupling, the method is especially useful when shear e�ects are important. In
the present study, the new method is used to predict the micro-stresses and to model the e�ective elastic constants

of unidirectional composites. Results obtained with the strain-compatible method of cells compare very well with
those of well-established traditional tools like ®nite element analysis. A variety of numerical results comparing the
accuracy and performance of the new method with those of the generalized method of cells, the ®nite element

method, and the classical Reuss and Voigt approximations is presented. 7 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The objective of micromechanical models of composites is to predict the e�ective (or macro or
average) properties and behavior of the composite starting from the properties and behavior of its
constituents. The simplest and oldest micromechanical models are those due to Voigt (1889) and Reuss
(1929). These are called the ``Voigt Approximation'', and the ``Reuss Approximation'', respectively.
More recently, many other micromechanical models have been proposed, e.g., the Concentric Cylinder
Assembly Model (CCA) (Hashin and Rosen, 1964), the Self-Consistent Method (Hill, 1965; Budiansky,
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1965), the Mori±Tanaka Method (Mori and Tanaka, 1973), and the Generalized Method of Cells
(GMC) (Paley and Aboudi, 1992; Aboudi, 1996). Some of these methods are known to give erroneous
results in some limiting situations. The Reuss approximation for instance produces incorrect results for
the ®ber-direction Young's modulus, while the Voigt approximation produces its greatest error when
estimating the transverse shear modulus. This of course is a consequence of the fact that the Voigt and
Reuss approximations represent upper and lower bounds for the sti�ness matrix coe�cients of a given
composite (e.g., see Herakovich, 1998). On the other hand, the more re®ned models also have their
shortcomings. The Mori±Tanaka method for instance, produces erroneous results in some limiting cases
(Benveniste, 1987). And the generalized method of cells (GMC) exhibits a lack of what can be termed
shear coupling. Shear coupling refers to the fact that the transverse shear stresses on a composite are in
general nonzero when the composite is subjected to a transverse normal stress. It is well known however
that GMC approximates these stresses as zero. The development of the strain-compatible method of
cells (SCMC) was motivated by the desire to remedy this lack of shear coupling.

Both GMC and SCMC are volume-averaging, micromechanical analysis tools that provide accurate
estimates of the e�ective mechanical properties and average responses of composites given the properties
and behavior of the constituents. One of the advantages of volume-averaging methods over standard
numerical analysis tools like the ®nite element method (FEM), is that they provide a 3D
characterization of the composite given a 2D discretization of its cross-section. The discretization
process in volume-averaging methods involves the identi®cation of so called representative volume
elements (RVEs) or unit cells which are subsequently divided into subcells.

When a particular set of assumptions or requirements regarding averaging of stresses and strains,
continuity of stresses and strains, and/or compatibility of strains is adopted, a speci®c method is
obtained. The generalized method of cells for instance requires displacement and traction continuity
among cells and subcells. In contrast, the new strain-compatible method of cells requires equilibrium of
cells and subcells and compatibility of strains. As a consequence of the latter requirements, SCMC
exhibits the desired shear coupling between normal and shear stresses. Furthermore, SCMC predictions
are very close to those of the ®nite element method.

In the following sections, the fundamentals of GMC and the new SCMC are presented. This is
followed by a series of numerical results for the problems of ®nding the e�ective elastic constants and
the distribution of micro-stresses in unidirectional composites.

2. Volume-averaging methods

Volume-averaging methods for micromechanical analysis of multi-phase composites rely on the idea
that it should be possible to obtain approximate expressions for the e�ective properties and behavior of
the composite by volume-averaging either the material properties, or the stresses and strains in the
constituents. In particular, GMC and SCMC are both volume-averaging methods in which the e�ective
properties and behavior are obtained by volume-averaging the stresses and strains in the composite.

When applied to unidirectional composites, both GMC and SCMC start from a discretized two-
dimensional representation of a typical cross-section of the composite. A portion of this cross-section is
identi®ed as a representative volume element (RVE). Fig. 1 depicts one such RVE. It is assumed that the
®bers of this unidirectional composite are directed in the x1 direction. The RVE should be large enough
to capture the essence of the composite properties and behavior, yet small enough to minimize the
computational burden1. For the purposes of the present discussion, it is going to be assumed that a

1 For details about how to choose the size of an RVE see e.g., (Ostoja-Starzewski, 1998).
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proper RVE has been chosen. The RVE is assumed to repeat itself in the x2 and x3 directions. In the
context of GMC and SCMC, the RVE is also identi®ed with a so called unit cell. Each unit cell is
divided into NbNg subcells, each of which can have di�erent material properties (Fig. 1).

Both GMC and SCMC can be thought of as based on the following fundamental assumption:
Each RVE can be mapped into a single point belonging to a homogeneous deformation ®eld with

displacement w and displacement gradient rw:
In addition to this fundamental assumption, GMC and SCMC share the following speci®c

assumptions:

Common GMC and SCMC Speci®c Assumptions:
1. The displacements are continuous along cell and subcell interfaces and the strains are constant
within the subcells.
2. The unit cell stresses and strains are periodic (the RVE repeats itself in the x2 and x3 directions, so
it repeats itself with all its attributes).

There are also speci®c assumptions to GMC and SCMC. These are:

Speci®c GMC Assumption:
3. There is traction continuity across all cell and subcell interfaces.

Speci®c SCMC Assumptions:
3. Subcell stresses satisfy the equilibrium equations.
4. Subcell strains satisfy the Saint±Venant's compatibility conditions.

2.1. Average strain relationships

The fundamental assumption and the speci®c assumptions 1 and 2 above (shared by both GMC and
SCMC) can be explicitly stated in terms of strains. To this end, the displacement gradient rw is chosen
such that the components of the small strain tensor correspond exactly to the average (or e�ective)
strains. That is, the components of E � 1

2�rTw� rw� are the following:

Fig. 1. Repeating unit cell (or RVE) with subcells and nomenclature.
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Note that with the exception of Eq. (1), these equations represent averages that are particular instances
of the general expression for e�ective average strain:

�eij � 1

hl

XNg

g

XNb

b

hblge
�bg�
ij �7�

Note that the averages corresponding to �e22 and �e12 are carried out with respect to the b direction only,
while the averages corresponding to �e33 and �e13 are carried out with respect to the g direction only. This
is necessary to guarantee the continuity of displacements across RVE interfaces.

Eqs. (1)±(6) can be written in matrix form as:

AGes � J�e �8�
where es � fe�1; 1�, e�1; 2�, . . . ,e�Nb , Ng�gT contains NbNg vectors with the subcell strains, and �e � f�e11, �e22,
�e33, 2�e23, 2�e13, 2�e12gT contains the e�ective strains. The matrices AG and J in (7) contain information
about the subcell and cell geometry. Their entries are hb's, lg's, hblg products; h's, l's, hl products; and
ones and zeros.

3. The generalized method of cells

As mentioned, GMC and SCMC di�er in assumptions 3 and 4. In the following section, the
equations corresponding to GMC's speci®c assumption 3, i.e., traction continuity, are presented.
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3.1. Traction continuity conditions (GMC)

Assuming that the e�ective strains �e are speci®ed, Eq. (8) can be regarded as a system of 2�Nb �Ng� �
NbNg � 1 equations containing 6NbNg unknown subcell strains. In the context of GMC, the remaining
5NbNg ÿ 2�Nb �Ng� ÿ 1 equations needed to ®nd the complete set of subcell strains are provided by
traction continuity conditions at the subcell interfaces (Paley and Aboudi, 1992). These traction
continuity conditions are the following (see Fig. 1):

s�bg�22 � s�b�1, g�22 , b � 1, Nb ÿ 1, g � 1, Ng �9�

s�bg�33 � s�b, g�1�33 , b � 1, Nb, g � 1, Ng ÿ 1 �10�

s�bg�23 � s�b�1, g�23 , b � 1, Nb ÿ 1, g � 1, Ng �11�

s�bg�32 � s�b, g�1�32 , b � Nb, g � 1, Ng ÿ 1 �12�

s�bg�21 � s�b�1, g�21 , b � 1, Nb ÿ 1, g � 1, Ng �13�

s�bg�31 � s�b, g�1�31 , b � 1, Nb, g � 1, Ng ÿ 1 �14�
The foregoing traction continuity conditions can be written in terms of subcell strains as:

AMeees � 0 �15�
if use is made of the elasticity constitutive relationships:

sss�bg� � C�bg�eee�bg� �16�
In Eq. (16), C�bg� represents the elastic sti�ness matrix of subcell �b, g�, and eee�bg� � fe�bg�11 , e�bg�22 , e�bg�33 , 2e�bg�23 ,
2e�bg�13 , 2e�bg�12 gT is a vector of the subcell strains. The matrix AM is then a 5NbNgÿ2�Nb�Ng�ÿ1� 6NbNg

matrix that contains entries of the individual elastic sti�ness matrices of all subcells.
Eqs. (8) and (15) can be combined into a single equation as follows:

Aeees � KÅeee �17�
where,

A �
�

AG

AM

�
�18�

and,

K �
�

J
0

�
�19�

Eq. (17) constitutes a system of 6NbNg equations with 6NbNg unknowns (assuming the e�ective average
strains are known). The solution of this system of equations constitutes the core of the computations for
GMC.
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4. The strain-compatible method of cells

The fundamental assumption, as well as the speci®c assumptions 1 and 2 above are invoked by
SCMC and GMC. However, instead of traction continuity, SCMC assumes equilibrium of cells and
subcells and compatibility of strains.

It should be emphasized that under the assumption of constant subcell strains, GMC's traction
continuity assumption amounts to an automatic satisfaction of the (discretized) equilibrium equations.
However, the reciprocal is not true, i.e., satisfaction of equilibrium does not necessarily imply traction
continuity across cell and subcell interfaces. In this sense, SCMC can be regarded as a method in which
GMC's assumption of traction continuity is relaxed to simply require equilibrium of cells and subcells.
Furthermore, the assumption of continuity of displacements across cell and subcell interfaces
(assumption 1 above) does not necessarily guarantee a unique displacement ®eld. In order to guarantee
a unique displacement ®eld, SCMC assumptions 1, 2 and 3 must be supplemented with the Saint±
Venant's compatibility conditions (assumption 4 above).

4.1. Equilibrium equations (SCMC)

For a unidirectional composite with the ®bers in the x1 direction and an x1-independent loading, the
equilibrium equations of elasticity reduce to:

@s12
@x2
� @s13
@x3
� 0 �20�

@s22
@x2
� @s23
@x3
� 0 �21�

@s32
@x2
� @s33
@x3
� 0 �22�

Discrete forms of these equations are presented in Section 4.3 below.

4.2. Compatibility relationships (SCMC)

A salient feature of SCMC is that it enforces Saint±Venant's strain compatibility conditions. This is
done in an approximate fashion by means of ®nite di�erences. The process is as follows:

Saint±Venant's compatibility equations are:

@ 2e11
@x 2

2

� @
2e22
@x 2

1

ÿ 2@ 2e12
@x1@x2

� 0 �23�

@ 2e22
@x 2

3

� @
2e33
@x 2

2

ÿ 2
@ 2e23
@x2@x3

� 0 �24�

@ 2e33
@x 2

1

� @
2e11
@x 2

3

ÿ 2
@ 2e13
@x1@x3

� 0 �25�
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ÿ @ 2e11
@x2@x3

� @

@x1

�
ÿ @e23
@x1
� @e31
@x2
� @e12
@x3

�
� 0 �26�

ÿ @ 2e22
@x1@x3

� @

@x2

�
ÿ @e31
@x2
� @e12
@x3
� @e23
@x1

�
� 0 �27�

ÿ @ 2e33
@x1@x2

� @

@x3

�
ÿ @e12
@x3
� @e23
@x1
� @e31
@x2

�
� 0 �28�

As a consequence of the unidirectionality of the composite, all derivatives involving x1 in (23)±(28) are
equal to zero. Also, from Eq. (1) all derivatives involving e11 are zero. As a result, Eqs. (23), (25) and
(26) are satis®ed identically. And Eqs. (27) and (28) reduce to the simpler forms:

@

@x2

�
ÿ @e31
@x2
� @e12
@x3

�
� 0 �29�

@

@x3

�
ÿ @e12
@x3
� @e31
@x2

�
� 0 �30�

Integrating Eq. (29) with respect to x2 and Eq. (30) with respect to x3, we obtain:

ÿ@e31
@x2
� @e12
@x3
� C2�x3�

and,

ÿ@e31
@x2
� @e12
@x3
� C3�x2�

or,

@e12
@x3
ÿ @e13
@x2
� constant � C �31�

In order to evaluate the constant in Eq. (31), we integrate this equation over the RVE, to obtain,

Chl �
�h
0

�l
0

�
@e12
@x3
ÿ @e13
@x2

�
dx3 dx2

or,

Chl �
�h
0

 �l
0

@e12
@x3

dx3

!
dx2 ÿ

�l
0

 �h
0

@e13
@x2

dx2

!
dx3

or,

Chl �
�h
0

�
e12�x2, l� ÿ e12�x2, 0�

�
dx2 ÿ

�l
0

�
e13�h, x3� ÿ e13�0, x3�

�
dx3

which yields,
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Chl � 0

when the periodicity of strains is invoked. Therefore, the constant in Eq. (31) is zero and the equation
becomes:

@e12
@x3
ÿ @e13
@x2
� 0 �32�

We are then left with Eqs. (24) and (32) from the strain compatibility conditions. Discrete versions of
these equations are presented below.

4.3. Equilibrium and compatibility equations: discrete form

The average strain relationships summarized in Eqs. (1)±(6) are already in discrete form. The
additional equilibrium and compatibility equations required by SCMC must be discretized to allow for a
numerical solution. We use a combination of forward, backward, and central ®nite di�erences for this
purpose. Sample discrete equations resulting from the application of ®nite di�erences to the equilibrium
and compatibility equations are given next.

4.3.1. Explicit equilibrium equations
Eqs. (20)±(22) are approximated by forward and backward di�erences. Referring for instance to

subcell (1, 1) in Fig. 2, Eq. (21) takes the form:

s�2, 1�22 ÿ s�1, 1�22

0:5�h1 � h2� �
s�1, 1�23 ÿ s�3, 1�23

0:5�l1 � l2 � � 0 �33�

Since there are NbNg subcells per RVE (Fig. 1), there should be NbNg discrete equations for each of
Eqs. (20)±(22). However, due to the periodicity of the stresses, only NbNg ÿ 1 equations corresponding

Fig. 2. 3� 3 unit cell to illustrate ®nite di�erence procedure.
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to each of these equations are independent. This is shown by integrating Eqs. (20)±(22) over the entire
RVE as follows. Taking Eq. (20) for instance, we obtain:�h

0

�l
0

�
@s12
@x2
� @s13
@x3

�
dx3 dx2 �

�l
0

 �h
0

@s12
@x2

dx2

!
dx3 �

�h
0

 �l
0

@s13
@x3

dx3

!
dx2

or, �h
0

�l
0

�
@s12
@x2
� @s13
@x3

�
dx3 dx2 �

�l
0

�
s12�h, x3� ÿ s12�0, x3�

�
dx3 �

�h
0

�
s13�x2, l� ÿ s13�x2, 0�

�
dx2

Invoking the periodicity of stresses this yields,�h
0

�l
0

�
@s12
@x2
� @s13
@x3

�
dx3 dx2 � 0 �34�

Similarly, from Eq. (21), we obtain,�h
0

�l
0

�
@s22
@x2
� @s23
@x3

�
dx3 dx2 � 0 �35�

and from Eq. (22),�h
0

�l
0

�
@s32
@x2
� @s33
@x3

�
dx3 dx2 � 0 �36�

It is evident that the integration of each of Eqs. (20)±(22) over the RVE should yield zero. However,
Eqs. (34)±(36) show that, due to the periodicity of stresses, each of these equations is satis®ed as an
identity. Since each of Eqs. (34)±(36) is the continuous version of the sum of discrete equations like Eq.
(33) for all subcells, it follows that the sum of discrete equations like Eq. (33) for all subcells is equal to
zero. Therefore, all but one of the discrete equilibrium equations corresponding to each of Eqs. (20)±
(22) are independent. That is, only NbNg ÿ 1 of the NbNg equations for each of (20)±(22) are
independent. We then have a total of 3�NbNg ÿ 1� independent equations from equilibrium. These
equations can be expressed in terms of strains by means of appropriate constitutive relationships.

4.3.2. Explicit compatibility equations
Saint±Venant's strain compatibility equations are approximated by means of forward and central

®nite di�erences. Referring to subcell (2, 2) in Fig. 2, the ®rst term of Eq. (24) is approximated as:

@ 2e22
@x 2

3

1 e�2, 3�22 ÿ e�2, 2�22

0:25l2�l2 � l3� � 0:125�l1 � l3��l2 � l3� ÿ
e�2, 2�22 ÿ e�2, 1�22

0:25l2�l1 � l2� � 0:125�l1 � l3��l1 � l2� �37�

The other two terms in Eq. (24) give rise to similar expressions. The remaining compatibility equation
(Eq. (32)) results in an approximation analogous to that of Eq. (33).

Since there are NbNg subcells, there should be NbNg discrete equations corresponding to each of Eqs.
(24) and (32). Due to the periodicity of the strains however, not all of these NbNg equations are
independent. In fact, only �Nb ÿ 1��Ng ÿ 1� of the NbNg equations corresponding to each of Eqs. (24)
and (32) are independent. The reasoning is analogous to that used for the discrete equilibrium equations
in the previous section. Taking for instance Eq. (32), we proceed as follows:
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Integrating Eq. (32) in the x2 direction yields:�h
0

�
@e12
@x3
ÿ @e13
@x2

�
dx2 � ÿ

�
e13�h, x3� ÿ e13�0, x3 �

�� @

@x3

�h
0

e12 dx2

Invoking the periodicity of strains, this becomes,�h
0

�
@e12
@x3
ÿ @e13
@x2

�
dx2 � 0� @

@x3

�h�e12 �

or, �h
0

�
@e12
@x3
ÿ @e13
@x2

�
dx2 � 0

Analogously, integrating Eq. (32) in the x3 direction, gives,�l
0

�
@e12
@x3
ÿ @e13
@x2

�
dx3 � 0

A pair of similar identities is obtained for Eq. (24). Since these integrals are continuous versions of the
sums of the discrete versions of Eqs. (24) and (32) in the b and g directions, it follows that the sums of
the discrete versions of Eqs. (24) and (32) in the b and g directions are equal to zero. Therefore, only
�Nb ÿ 1��Ng ÿ 1� of the NbNg equations corresponding to each of Eqs. (24) and (32) are independent.
We then have a total of 2�Nb ÿ 1��Ng ÿ 1� independent equations from compatibility.

4.3.3. Matrix form of the equations
Altogether, there are 2�Nb �Ng� �NbNg � 1 equations from the average strain relationships,

3�NbNg ÿ 1� equations from equilibrium, and 2�Nb ÿ 1��Ng ÿ 1� equations from compatibility. This gives
a total of 6NbNg equations for 6NbNg unknown subcell strains. These equations can be written in matrix
form as:

ÄAeees � ÄKÅeee �38�
where

ÄA �

264 ÄAG
ÄAM
ÄAC

375 �39�

and,

ÄK �
24 ÄJ

0
0

35 �40�

where the submatrices ÄAG, ÄAM, and ÄJ are analogous to those in Eqs. (18)±(19), and ÄAC is a new matrix
that results from the compatibility relationships.
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5. Determination of e�ective elastic constants

GMC and SCMC require the solution of the linear systems (17) and (38). These solutions result in so
called strain concentration factors (Hill, 1964). The following steps illustrate the procedure to ®nd these
concentration factors for SCMC. The procedure for GMC is completely analogous.

First, Eq. (38) is premultiplied by ÄA
ÿ1

to yield:

eees � ÄAs Åeee �41�
where ÄAs � ÄA

ÿ1 ÄK is a matrix of concentration factors. This matrix is now partitioned into NbNg 6 � 6
submatrices, each relating the e�ective strains to the strains in a speci®c subcell. Let each of these 6 � 6
concentration factor submatrices be denoted ÄA

�bg�
s : Then, an expression analogous to Eq. (41) can be

written for each subcell as:

eee�bg� � ÄA
�bg�
s Åeee �42�

Premultiplication of Eq. (42) by C�bg� yields:

sss�bg� � C�bg� ÄA
�bg�
s Åeee, �43�

and application of a de®nition of average stresses analogous to Eq. (7), results in:

Åsss � 1

hl

XNb

b

XNg

g

hblgC
�bg� ÄA

�bg�
s Åeee �44�

which suggests the following de®nition for the e�ective (average) sti�ness matrix:

ÅC � 1

hl

XNb

b

XNg

g

hblgC
�bg� ÄA

�bg�
s �45�

6. Micromechanical analysis using the FEM

The FEM results reported in the present study were obtained using an in-house 3D ®nite element
code. The RVE was discretized with displacement-based 8-noded linear elements (see Fig. 3). The
average strain relationships are enforced in the FEM model by requiring that the displacements at the
interfaces of the (in this case) 3D unit cell be linked in such a way that the strains satisfy 3D versions of
Eqs. (1)±(6). Referring for instance to nodes i and k in Fig. 3, the displacements uk and ui are related
by:

uk � ui � E�rk ÿ ri � �46�
where ri and rk are the position vectors of points i and k, respectively; and E is the e�ective strain tensor
as previously de®ned.

It should be pointed out that even though SCMC and the FEM are clearly distinct methods, they
satisfy asymptotically the same elasticity equations. The displacement-based FEM is a general method
to solve boundary value problems that uses displacements as unknowns. In contrast, SCMC is a
speci®c method that is entirely formulated in terms of stresses and strains. Furthermore, the main
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matrices of these two methods have a di�erent number of nonzero entries as it will be shown in the
next section. In the FEM, equilibrium is approximate and satis®ed exactly only as the mesh is re®ned.
Also, the constitutive equations are incorporated exactly into the ®nite element model, and
compatibility is automatically satis®ed since the displacement ®eld is single valued. In the SCMC
approach, the constitutive equations are also incorporated exactly into the model, and compatibility
and equilibrium are approximated by ®nite di�erences. As a result, the di�erence between results
obtained with SCMC and the FEM must come mainly from the approximation of the compatibility
equations. As it will be observed in the next section, this di�erence is small and tends to zero as the
discretization is re®ned.

7. Numerical results

In order to assess the accuracy and computational e�ciency of SCMC, three kinds of numerical
experiments were performed. The ®rst one consisted of computing the subcell stresses for a given
e�ective stress. This was carried out for the three methods, e.g., SCMC, GMC, and the FEM. Two
types of microstructures were considered, a microstructure with a random distribution of ®ber material
(Fig. 4), and a microstructure with a single square ®ber (Fig. 5). In all numerical experiments the
composite microstructures consisted of isotropic boron ®bers embedded in an aluminum matrix. The
elastic constants are presented in Table 1.

The second type of numerical experiment consisted of comparing the e�ective elastic constants
obtained with SCMC, GMC, the FEM, the Reuss, and the Voigt approximations. This was

Fig. 3. Sample FEM discretization of unit cell using 8-noded 3D elements.

Table 1

Material properties of Boron/Aluminum composite used in the numerical experiments (from Ref. Budiansky, 1965)

Material E (GPa) n

Boron 413.7 0.2

Aluminum 55.16 0.3
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performed for a microstructure with a hexagonal packing of ®ber material and a varying ®ber volume
fraction.

Finally, the third numerical experiment consisted of a comparison of the e�ective elastic constants of
the random microstructure and the single square ®ber microstructure as a function of the number of
subdomains.

Fig. 4. s23= �s33 for a composite with random ®ber inclusions. Vf � 0:5, Nb � Ng � 30:
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7.1. Prediction of subcell stresses

As mentioned, one of the most important features of SCMC is its capability to model coupling
between normal and shear components of stress. This shear coupling feature is illustrated in Fig. 4 for
the normalized stresses s23= �s33 of a random microstructure, and in Fig. 5 for the normalized stresses
s23= �s22 in a composite with uniformly distributed square ®bers. It can be seen that, in these cases, GMC

Fig. 5. s23= �s22 for a composite with square ®bers. Vf � 0:5, Nb � Ng � 25:
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predicts zero shear stresses while SCMC and the FEM predict nonzero subcell shear stresses. It can be
shown that the average shear stress for the SCMC and FEM results is zero as it should be. It can also
be observed from the ®gures that the peak transverse shear stresses are higher for the random
microstructure as could be expected. Finally, it is observed that the SCMC and FEM results are very
similar in all cases.

Numerical experiments for subcell stresses were performed for all the six components of the e�ective
stress. A summary of qualitative results for all cases studied is presented in Table 2. Quantitative results
are presented for a few noteworthy cases in Figs. 6±10. Fig. 6 illustrates the distribution of s11= �s11
within the unit cell, for a nonzero �s11: It can be observed that, in this case, all the three methods yield
exactly the same result.

Table 2

Summary of results for subcell stresses experiment

Loading � �s�) Subcell stress �s�)
Normalized stress �s�= �s�)

Comments

SCMC FEM GMC

�s11 s11 nonzero nonzero nonzero All methods same values (Fig. 6)

s22 nonzero nonzero nonzero Di�erent numerical values

s33 nonzero nonzero nonzero Di�erent numerical values

s23 nonzero nonzero zero

s13 zero zero zero

s12 zero zero zero

�s22 s11 nonzero nonzero nonzero Di�erent numerical values

s22 nonzero nonzero nonzero See Fig. 9

s33 nonzero nonzero nonzero Di�erent numerical values

s23 nonzero nonzero zero Shear coupling (See Fig. 5)

s13 zero zero zero

s12 zero zero zero

�s33 s13 nonzero nonzero nonzero Di�erent numerical values

s22 nonzero nonzero nonzero Di�erent numerical values

s33 nonzero nonzero nonzero Di�erent numerical values

s23 nonzero nonzero zero Shear coupling (See Fig. 4)

s13 zero zero zero

s12 zero zero zero

�s23 s11 nonzero nonzero zero

s22 nonzero nonzero zero Shear coupling (See Fig. 8)

s33 nonzero nonzero zero

s23 nonzero nonzero 1.0 See Fig. 7

s13 zero zero zero

s12 zero zero zero

�s13 s11 zero zero zero

s22 zero zero zero

s33 zero zero zero

s23 zero zero zero

s13 nonzero nonzero nonzero See Fig. 10

s12 nonzero nonzero zero Shear coupling

�s12 s11 zero zero zero

s22 zero zero zero

s33 zero zero zero

s23 zero zero zero

s13 nonzero nonzero zero Shear coupling

s12 nonzero nonzero nonzero
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Fig. 7 illustrates the distribution of the transverse shear stress due to a nonzero e�ective shear stress
(the ``self-response'' of the shear stress). It can be seen that while GMC predicts a uniform subcell shear
stress (equal to the applied e�ective stress), SCMC and the FEM predict non-uniform subcell shear
stresses.

Shear coupling is also illustrated in Fig. 8. In this case, the distribution of the normal stresses is
plotted for a given nonzero applied e�ective stress �s23:

Fig. 6. s11= �s11 for a composite with random ®ber Inclusions. Vf � 0:5, Nb � Ng � 30:
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There is also coupling between s13 and s12: It is observed that in this case GMC predicts no coupling
while SCMC and the FEM predict non-uniform, nonzero subcell stresses (See Table 2).

Finally, Figs. 9 and 10 illustrate the ``self-responses'' of s22 and s13: Fig. 9 illustrates the fact that
GMC predicts no variation of s22 along the x2 direction. Conversely, Fig. 10 illustrates the fact that
GMC predicts no variation of s13 along the x3 direction. These results are a direct consequence of the
traction continuity conditions. A similar phenomenon is observed for the self-responses of s12 and s33
(not shown).

Fig. 7. s23= �s23 for a composite with random ®ber inclusions. Vf � 0:5, Nb � Ng � 30:
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7.2. Prediction of elastic constants

The fact that GMC is capable of modelling, with su�cient accuracy, the mechanical response and the
elastic constants of multi-phase composites over a wide range of conditions and behavior is well
established (see e.g., Lissenden and Herakovich, 1992; Aboudi, 1991; Orozco, 1997). Due to GMC's

Fig. 8. s22= �s23 for a composite with random ®ber inclusions. Vf � 0:5, Nb � Ng � 30:
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traction continuity assumption however, monoclinic behavior is approximated with orthotropic behavior.
The responses shown in Figs. 9 and 10 constitute an example of this. This of course has an adverse
e�ect on the estimation of the e�ective elastic constants of the composite, especially when the material is
monoclinic. Since SCMC and the FEM are free from the traction continuity condition, they can model
monoclinic materials quite accurately. In this section, we compare elastic constant predictions by
SCMC, GMC, the FEM, the Reuss and the Voigt approximations for the hexagonal microstructure

Fig. 9. s22= �s22 for a composite with random ®ber inclusions. Vf � 0:5, Nb � Ng � 30:
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shown in Fig. 11. We also compare GMC, SCMC, and the FEM for the random and the square ®ber
microstructures of the previous section.

7.2.1. Elastic constants as a function ®ber volume fraction
The comparison between SCMC, GMC, the FEM, the Reuss, and the Voigt approximations was ®rst

Fig. 10. s13= �s13 for a composite with random ®ber Inclusions. Vf � 0:5, Nb � Ng � 30:
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made for a varying ®ber volume fraction in the composite. A hexagonal microstructure (Fig. 11) was
used in this experiment. This particular microstructure was chosen because its properties closely
approximate those of a transversely isotropic material. This allows for a fair comparison of GMC,
SCMC, and the FEM with the Voigt and Reuss models which rely on relative volume fractions of the
phases only (see e.g., Herakovich, 1998). Results for six elastic constants are presented in Figs. 11 and
12. It can be seen that all methods produce identical estimates for E11 except the Reuss model (Fig. 11).
This is because of Reuss' fundamental assumption that the local stresses are equal to the e�ective stress.

Fig. 11. Elastic constants. Unit cell with hexagonal packing. Vf � 0:5, Nb � 46,Ng � 40:
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It can also be observed that for E22, SCMC, and the FEM produce very similar estimates. On the other
hand, GMC's approximation of G23 is identical to that of the Reuss approximation. In all the cases
shown in Fig. 12, it is observed that SCMC and the FEM produce very similar estimates. In general,
GMC estimates are also very similar to those of the FEM and SCMC, except for G23, G12 and G13 (not
shown).

In summary, it was found that GMC, SCMC, and the FEM produce elastic constant estimates that
are very similar to each other. Due to the lack of shear coupling however, GMC estimates for G23, G12

Fig. 12. Elastic constants. Unit cell with hexagonal packing. Vf � 0:5: Nb � 46,Ng � 40:
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and G13 tend to be far from those of the other two methods. GMC estimates of the shear moduli are in
fact very close to the lower bound represented by the Reuss approximation.

7.2.2. Elastic constants as a function of the number of subdomains
In this numerical experiment, the number of subdomains in the RVE (subcells for SCMC and GMC

and ®nite elements for the FEM) was sequentially increased. For the random microstructure, the
sequence was: 6� 6, 12� 12, 18� 18, 24� 24 and 30� 30. For the microstructure with the square ®ber,

Fig. 13. Elastic constants for random and square arrays of a Boron/Aluminium composite. Vf � 0:5: Top left: Nb � Ng � 30: Bot-
tom left: Nb � Ng � 25:
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the sequence was 7 � 7, 15 � 15, 20 � 20 and 25 � 25. These sequences guarantee an increase in the
number of subdomains while keeping the ®ber volume fraction approximately constant (at about 0.5).
Fig. 13 illustrates the results obtained in this manner for the transverse shear modulus. The ®rst
observation from Fig. 13 is that the GMC approximation does not vary with the number of
subdomains. In other words, GMC results are mesh independent. This is actually an advantage of GMC
over SCMC and the FEM since it means that estimates of the properties and behavior of the composite
can be obtained at a relatively low cost. By the same token, it can be seen that the SCMC and the FEM
approximations do not change much after about 200 subdomains (See Fig. 13). These two methods are
nevertheless mesh dependent and the approximations improve in general, by re®ning the discretization.
In Fig. 13, it can be seen that the maximum di�erence between estimates occurs between GMC and the
FEM for the random microstructure. This di�erence is of the order of 17%. Other results for elastic
constant estimates are summarized in Tables 3 and 4. These correspond to discretizations using the
maximum number of subdomains (900). The error in Tables 3 and 4 is given with respect to the FEM
estimate. It can be seen that the maximum errors occur for the GMC estimates of G12, G13 and G23.
They are of the order of 7% for the microstructure with the square ®ber and of the order of 30% for
the random microstructure.

Table 4

Comparison of elastic constants for composite with a random microstructure (30 � 30) Ð Percent di�erence relative to FEM

results. Elastic moduli in GPa

Constant FEM GMC % di�erence SCMC % di�erence

E11 234.7 234.7 0.00 234.7 0.00

E22 138.5 117.9 ÿ14.8 131.0 ÿ5.41
E33 137.3 113.1 ÿ17.6 128.6 ÿ6.36
n12 0.2361 0.2446 3.60 0.2387 1.10

n13 0.2369 0.2492 5.19 0.2405 1.51

n23 0.3078 0.3289 6.85 0.3182 3.37

G23 54.78 37.78 ÿ31.0 57.70 5.33

G13 60.99 40.53 ÿ33.5 58.77 ÿ3.63
G12 60.48 42.94 ÿ29.0 58.51 ÿ3.25

Table 3

Comparison of elastic constants for composite with square ®ber (25 � 25) Ð Percent di�erence relative to FEM results. Elastic

moduli in GPa

Constant FEM GMC % di�erence SCMC % di�erence

E11 234.7 234.7 0.00 234.7 0.00

E22 137.4 130.8 ÿ4.80 135.6 ÿ1.31
E33 137.4 130.8 ÿ4.80 135.6 ÿ1.31
n12 0.2428 0.2446 0.74 0.2433 0.20

n13 0.2428 0.2446 0.74 0.2433 0.20

n23 0.2396 0.2568 7.17 0.2440 1.83

G23 39.39 37.79 ÿ4.06 39.59 ÿ0.50
G13 49.35 45.73 ÿ7.33 49.28 ÿ0.14
G12 49.35 45.73 ÿ7.33 49.28 ÿ0.14
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8. Computational issues

SCMC matrices, just as GMC's and FEM's have a large number of zero entries. As a result, sparse
implementations of these methods are most advantageous (Orozco, 1997). All numerical results reported
here were obtained using sparse implementations of GMC, SCMC, and the FEM. The sparse
factorization package available in the IMSL mathematical library was used to solve the linear systems.
A comparison of the computational e�ciency of the three methods is presented below. The comparison
is presented for a small problem and for a moderate size problem. The small problem comparison is
shown in Table 5 and corresponds to a 6� 6 unit cell for GMC, and a 12� 12 unit cell for SCMC and
the FEM. This particular choice was made because 12 � 12 is the smallest discretization for which
SCMC and the FEM achieve a ``good enough'' value of the elastic constant estimates. Since GMC is
mesh independent, results were obtained for a 6� 6 discretization (see Fig. 13).

For the small problem (Table 5), GMC is about 300 hundred times more e�cient than the FEM,
while SCMC is 30 times more e�cient than the FEM. The comparison for the moderate size problem is
presented in Table 6. This corresponds to a 30 � 30 unit cell for all the three methods. In this case,
GMC is 42 times faster than the FEM, while SCMC is six times faster. The number of nonzero entries
in the main matrices of the di�erent methods is also shown in Tables 5 and 6. It can be seen that the
number of nonzero entries is directly related to the CPU times reported as it might be expected.

9. Concluding remarks

A new volume-averaging method for micromechanical analysis of multi phase composites called
Strain-Compatible Method of Cells (SCMC) has been presented. The method is inspired by the well
known generalized method of cells (GMC). In contrast to GMC, however, SCMC exhibits the so called
``shear coupling'' between the normal and shear stresses. In the present study, the new method has been
used to model the elastic constants and the micro-stresses of unidirectional composites. SCMC's
accuracy and performance have been compared with those of GMC and those of the ®nite element
method. It has been found that SCMC results are consistent with the results of the ®nite element

Table 5

Performance comparison between GMC, SCMC, and FEM Ð Small problem

Method Subcell arrangement No. of subcells Nonzeros in A CPU (s) (SUN Sparc-20) Speed-up wrt. FEM

GMC 6� 6 36 766 0.23 298

SCMC 12� 12 144 4074 2.39 29

FEM 12� 12 144 6102 68.6 1

Table 6

Performance comparison between GMC, SCMC and FEM Ð Moderate size problem

Method Subcell arrangement No. of subcells Nonzeros in A CPU (s) (RS 6000) Speed-up wrt. FEM

GMC 30� 30 900 17,638 12.4 42

SCMC 30� 30 900 35,154 87.8 6

FEM 30� 30 900 41,166 523.6 1
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method. In addition, the resulting SCMC matrix equations are formally equivalent to those of GMC,
which results in an e�cient numerical implementation. In particular, either SCMC or GMC
formulations are more convenient than those of the traditional FEM because they completely eliminate
the need to model boundary conditions. Furthermore, both SCMC and GMC provide three-dimensional
characterizations of the composite with just a two-dimensional model (unit cell). In order to obtain the
same information using the FEM, it is usually necessary to resort to three-dimensional elements. As far
as computational performance is concerned, the computational cost of SCMC is higher than that of
GMC but about 1/6th of that of the traditional FEM. The new method can be readily extended to deal
with three-dimensional composite microstructures and with nonlinear behavior.
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